
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 71
Volume 2, Issue 1, February 2011

A New Narrow-Block Mode of Operation for Disk

Encompression with Tweaked Block Chaining

Debasis Gountia
1
 and Dipanwita Roy Chowdhury

2

(Corresponding author: Debasis Gountia)

1Department of Computer Science & Application, College of Engineering & Technology, Bhubaneshwar, India
2Department of Computer Science & Engineering, Indian Institute of Technology, Kharagpur, India

dgountia@gmail.com, drc@cse.iitkgp.ernet.in

Abstract: In this paper, a new Disk Encompression (i.e.,

encryption with compression) with Tweaked Block Chaining mode

(DETBC) has been proposed. DETBC is a modified of XTS i.e.,

Xor-Encrypt-Xor based Tweaked Code Book mode with

CipherText Stealing. Unlike XTS, DETBC is faster, memory saving

and is better resistant to the attacks. DETBC is characterized by its

high throughput compared to the current solutions and improve its

diffusion properties.

Keywords: block ciphers, disk encryption, Galois Field

multiplier GF (2128), tweakable block ciphers.

1. Introduction

Data encryption has been used for individual precious

documents for the security purpose in the past. With the

advent of more powerful desktop processors in the last

decade, the data throughput of ciphers surpassed that of hard

disks. Hence, encryption is no longer a bottle neck and

regular users become more interested in the topic of hard

disk encryption.

 In today’s computing environment, there are many threats

to the confidentiality of information stored on computers and

other devices like USB or external hard drive. Device loss or

theft, Malware which give unauthorized access are common

threat against end user devices. To prevent the disclosure of

sensitive data, the data needs to be secured. Disk encryption

is usually used to protect the data on the disk by encrypting

it. The whole disk is encrypted with a single/multiple key(s)

and encryption/decryption are done on the fly, without user

interference. The encryption is on the sector level, that means

each sector should be encrypted separately.

 There are so many block ciphers dedicated to this task like

Bear, Lion, Beast and Mercy [5, 5, 12, 16]. Bear, Lion and

Beast are considered to be slow, as they process the data

through multiple passes and Mercy was broken in [20]. The

current available narrow-block modes of operations that offer

error propagation are subjected to manipulation attacks. A

need for a new secure and fast mode of operation with less

memory consumption, that offers error propagation, has

demanded.

 In this paper, we propose a new narrow-block disk

encryption mode of operation with compression. We decided

to build the Tweaked Block Chaining (TBC) mode using

Xor-Encrypt-Xor (XEX) [23] to inherit from its security and

high performance and use CBC like operations to gain the

error propagation property. This design is XEX-based TBC

with CipherText Stealing (CTS) rather than Tweaked Code

Book mode (TCB) as in case of XTS (XEX-based TCB with

CTS). This model includes a Galois Field multiplier GF

(2
128

) that can operate in any common field representations.

This allows very efficient processing of consecutive blocks in

a sector. To handle messages whose length is greater than

128-bit but not a multiple of 128-bit, a variant of CipherText

Stealing will be used for tweaked block chaining. We named

this mode Disk Encompression with Tweaked Block

Chaining (DETBC).

 In section 2, we present Encryption with compression, and

the constraints facing in the disk encryption applications. In

section 3, we present tweak calculation, efficient

multiplication, and exponential. Section 4 describes the

implementation of our proposed scheme. Section 5 shows the

performance analysis of narrow-block modes of operations

that offer error propagation. Finally, section 6 concludes the

work with presenting open problem.

2. Disk Encryption

Hard disk encryption is usually used to encrypt all the data

on the disk. The whole hard disk is encrypted with a

single/multiple key(s) and encryption/ decryption are done on

the fly, without user interference. The encryption is on the

sector level that means each sector should be encrypted

separately.

2.1 Encryption with Compression

Figure 1. Steps for Disk encryption scheme.

Using a data compression algorithm together with an

encryption algorithm makes sense for two reasons:

1. Cryptanalysis relies on exploiting redundancies in the plain

text; compressing a file before encryption reduces

redundancies.

2. Encryption is time-consuming; compressing a file before

encryption speeds up the entire process.

 In this work, we use the”LZW 15-bit variable Rate

Encoder” [15] for compression of the data. To access data

from the disk, we have to first decrypt and then uncompress

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 72
Volume 2, Issue 1, February 2011

the decrypted data.

 2.2 Disk Encryption Constraints

The common existing disk constraints are:

Data size. The ciphertext length should be the same as the

plaintext length. Here, we use the current standard (512-byte)

for the plaintext.

Performance. The used mode of operation should be fast

enough, as to be transparent to the users. If the mode of

operation results in a significant and noticeable slowdown of

the computer, there will be great user resistance to its

deployment.

3. Disk Encompression with Tweaked Block

Chaining

 3.1 Goals

The goals of designing the Disk Encompression with

Tweaked Block Chaining (DETBC) mode are:

Security: The constraints for disk encryption imply that the

best achievable security is essentially what can be obtained

by using ECB mode with a different key per block [21]. This

is the aim.

Complexity: DETBC complexity should be at least as fast as

the current available solutions.

Parallelization: DETBC should offer some kind of

parallelization.

Error propagation: DETBC should propagate error to

further blocks (this may be useful in some applications).

3.2 Terminologies

The following terminologies are used to describe DETBC:

Pi: The plaintext block i of size 128 bits.

Js: The sequential number of the 512-byte sector s inside the

track encoded as 5-bit unsigned integer.

Ii: The address of block i encoded as 64-bit unsigned integer.

Ti: The tweak i.

α: Primitive element of GF (2
128

).

←: Assignment of a value to a variable.

ǁ: Concatenation operation.

PPi : Pi Ti−1

K1: Encryption key of size 128-bit used to encrypt the PP.

K2: Tweak key of size 128-bit used to produce the tweak .

EK1: Encryption using AES algorithm with key K1.

DK1: Decryption using AES algorithm with key K1.

Ci: The ciphertext block i of size 128 bits.

: Bitwise Exclusive-OR operation.

: Multiplication of two polynomials in GF (2
128

).

3.3 Tweak Calculation

In our proposed scheme, the mode of operation takes four

inputs to calculate the ciphertext (4096-bit). These inputs are:

1. The plaintext of size 4096-bit.

2. Encryption key of size 128 or 256-bit.

3. Tweak key of size 128 or 256-bit.

4. Sector ID of size 64-bit.

Usually a block cipher accepts the plaintext and the

encryption key to produce the ciphertext. Different modes of

operation have introduced other inputs. Some of these modes

use initial vectors IV like in CBC, CFB and OFB modes [7],

counters like in CTR [8] or nonces like in OCB mode [9].

The idea of using a tweak was suggested in HPC [10] and

used in Mercy [16]. The notion of a tweakable block cipher

and its security definition was formalized by Liskov, Rivest

and Wagner [11]. The idea behind the tweak is that it allows

more flexibility in design of modes of operations of a block

cipher. There are different methods to calculate tweak from

the sector ID like ESSIV [13] and encrypted sector ID [14].

 In this work, the term tweak is associated with any other

inputs to the mode of operation with the exception of the

encryption key and the plaintext. Here, an initial tweak T0,

which is equal to the product of encrypted block address,

where the block address (after being padded with zeros) is

encrypted using AES by the tweak key, and α
Js

, where Js is

the sequential number of the 512-byte sector s inside the

track encoded as 5-bit unsigned integer and α is the primitive

element of GF (2
128

), will be used as the initialization vector

(IV) of CBC. The successive tweaks are the product of

encrypted block address and the previous cipher text instead

of α
Js

. When next sector comes into play, again initial tweak

is used, and the successive tweaks are again the product of

encrypted block address and previous ciphertext. This is

done so assuming that each track has 17 sectors and each

sector has 32 blocks as per the standard disk structure. This

procedure continues till end of the input file.

 3.4 Efficient Multiplication in GF (2
128

)

Efficient multiplication in GF (2
128

) may be implemented in

numerous ways, depending on whether the multiplication is

hardware or software and optimization scheme. In this work,

we perform 16-byte multiplication. Let a, and b are two 16-

byte operands and we consider the 16-byte output. When

these blocks are interpreted as binary polynomials of degree

127, the procedure computes p = a*b mod P, where P is a

128-degree polynomial P128(x) = x
128

 + x
7
 + x

2
 + x +

1.Multiplication of two elements in the finite field GF (2
128

)

is computed by the polynomial multiplication and taking the

remainder of the Euclidean division by the chosen irreducible

polynomial. In this case, the irreducible polynomial is

P128(x)= x
128

 + x
7
 + x

2
 + x + 1.

Table 1. Algorithm for Multiplication in GF (2

128
).

Computes the value of p = a * b, where a, b and p ϵ GF (2
128

)

 Algorithm PolyMult16(a, b) {

 p = 0; /* Product initialized to zero*/

 while (b) {

 if (b & 1) p = p a; /*p xor a if the LSB of b is 1*/

 if (a127 = = 0) a << = 1; /*Left shift of bits in a by 1*/

 else a = (a <<= 1) 0x87;/* x
128

 + x
7
 + x

2
 + x + 1 */

 b >>= 1;/* Right shift of bits in the multiplier by 1 */

 }

 return p;

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 73
Volume 2, Issue 1, February 2011

}

 3.5 Efficient Modular Exponentiation

Compute efficiency: z = x
c

mod n

 L -1

 Express c as follows: c = ∑ (ci *2
i
),

 i = 0

where ci = 0 or 1, value of i from 0 to (L-1) and L is the

number of bits to represent c in binary.

The well-known Square-And-Multiply algorithm reduces the

number of modular multiplications required to compute x
c

mod n to at most 2L. It follows that x
c

mod n can be

computed in time O(Lk
2
). Total number of modular

multiplications is at least L and at most 2L. Therefore, time

complexity is the order of [(log c)*k
2
], where n is a k-bit

integer.

 Efficient exponent in the finite field GF (2
128

) is computed

by the polynomial multiplication and taking the remainder of

the Euclidean division by the chosen irreducible polynomial.

In this case, the irreducible polynomial is P128(x) =

x
128

+x
7
+x

2
+x+1.

Table 2. Algorithm for computing of z = x
c
mod n , where

x, c and z ϵ GF(2
128

)

Algorithm Square_And_Multiply (x, c, n){

 z = 1; /* z initialized to one*/

 for (i = (L - 1); i > = 0; i--) {

 z = (z * z) mod n;

 if (ci = = 1)

 z = (z * x) mod n;

 }

 return (z);

}

4. Implementation of the Proposed Scheme

The design includes the description of the DETBC transform

in both encryption and decryption modes, as well as how it

should be used for encryption of a sector with a length that is

not an integral number of 128-bit blocks.

4.1 Encryption of a Data Unit.

The encryption procedure for a 128-bit block having index j

is modeled with Equation (1):

 Ci ← DETBC-AES-blockEnc (Key, Pi, I, j) ………..(1)

 where

 Key is the 256-bit AES key

 Pi is a block of 128 bits (i.e., the plaintext)

 I is the address of 128-bit block inside the data unit

 j is the logical position or index of the 128-bit block

 inside the sector

 Ci is the block of 128 bits of ciphertext resulting from

the operation

The key is parsed as a concatenation of two fields of equal

size called Key1 and Key2 such that:

 Key = Key1 || Key2.

The plaintext data unit is partitioned into m blocks, as

follows:

 P = P1 || … || Pm-1 || Pm

where m is the largest integer such that 128(m-1) is no more

than the bit-size of P, the first (m -1) blocks P1,…, Pm-1 are

each exactly 128 bits long, and the last block Pm is between 0

and 127 bits long (Pm could be empty, i.e., 0 bits long).

The ciphertext Ci for the block having index j shall then be

computed by the following or an equivalent sequence of steps

(see Figure 2):

Figure 2. Encryption of data unit using DETBC.

Algorithm DETBC-AES-blockEnc(Key, Pi, Ii, j)

Case1 (j = 0):

1. T i-1 ← AES-enc (Key2, Ii) α
Js

2. PP i ← P i T i-1

3. CC i ← AES-enc(Key1, PP i)

4. C i ← CC i T i-1

Case2 (j > 0):
1. T i-1 ← AES-enc (Key2, Ii) C i-1

2. PP i ← P i T i-1

3. CC i ← AES-enc(Key1, PP i)

4. C i ← CC i T i-1

AES-enc(K, P) is the procedure of encrypting plaintext P

using AES algorithm with key K, according to FIPS-197.The

multiplication and computation of power in step (1) is

executed in GF (2
128

), where α is the primitive element

defined in 3.2(see 3.4 & 3.5).

The cipher text C is then computed by the following or an

equivalent sequence of steps:

Algorithm DETBC-Encrypt(Key, P, I)

1. for i ← 0 to m-3 do

a) j ← i % 32

b) Ci+1 ← DETBC-AES-blockEnc (Key, Pi+1, I i+1, j)

2. r ← bit-size of Pm

3. if r = 0 then do

a) j ← (m-2) % 32

b) Cm-1 ← DETBC-AES-blockEnc (Key, Pm-1, I m-1, j)

c) Cm ← empty

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 74
Volume 2, Issue 1, February 2011

4. else do

a) j ← (m-2) % 32

b) CCm-1←DETBC-AES-blockEnc(Key,Pm-1,Im-1, j)

c) Cm ←first leftmost r bits of CC m-1

d) C’ ← last rightmost (128-r) bits of CC m-1

e) PPm-1← Pm || C’

f) j ← (m-1) % 32

g) Cm-1← DETBC-AES-blockEnc(Key,PP m-1,I m,j)

5. C ← C1 ||…. || Cm-1 || Cm

An illustration of encrypting the last two blocks Pm−1Pm in

the case that Pm is a partial block (r > 0) is provided in

Figure 3.

Figure 3. DETBC encryption of last two blocks

when last block is 1 to 127 bits.

4.2 Decryption of a Data Unit.

The decryption procedure for a 128-bit block having index j

is modeled with Equation (2):

 Pi ← DETBC-AES-blockDec(Key, Ci , I, j) ………..(2)

where

 Key is the 256-bit AES key

 Ci the 128-bit block of ciphertext

 I is the address of the 128-bit block inside the data unit

j is the logical position or index of the 128-bit block

 inside the sector

 Pi is the block of 128-bit of plaintext resulting from the

 operation

The key is parsed as a concatenation of two fields of equal

size called Key1 and Key2 such that:

 Key = Key1 || Key2.

The ciphertext is first partitioned into m blocks, as follows:

 C = C1 || … || Cm-1 || Cm

where m is the largest integer such that 128(m-1) is no more

than the bit-size of C, the first (m-1) blocks C1,…,Cm-1 are

each exactly 128 bits long, and the last block Cm is between 0

and 127 bits long (Cm could be empty, i.e., 0 bits long).

The plaintext Pi for the block having index j shall then be

computed by the following or an equivalent sequence of steps

(see Figure 4):

Figure 4. Decryption of ciphertext blocks using DETBC.

Algorithm DETBC-AES-blockDec(Key, Ci, Ii, j)

Case1 (j = 0):

1. Ti-1 ← AES-enc (Key2, Ii) α
Js

2. CCi ← Ci T i-1

3. PPi ← AES-dec(Key1, CC i)

4. Pi ← PPi T i-1

Case2 (j > 0):
1. T i-1 ← AES-enc (Key2, Ii) C i-1

2. CC I ← Ci T i-1

3. PPi ← AES-dec(Key1, CCi)

4. Pi ← PPi T i-1

AES-dec (K,C) is the procedure of decrypting ciphertext C

using AES algorithm with key K, according to FIPS-197. The

multiplication and computation of power in step (1) is

executed in GF (2
128

), where α is the primitive element

defined in 3.2 (see 3.4 & 3.5).

The plaintext P is then computed by the following or an

equivalent sequence of steps:

Algorithm DETBC-Decrypt (Key, C, I)

1. for i ← 0 to m-3 do

a) j ← i % 32

b) Pi+1 ← DETBC-AES-blockDec (Key, Ci+1, I i+1, j)

2. r ← bit-size of Cm

3. if r = 0 then do

a) j ← (m-2) % 32

b) Pm-1 ← DETBC-AES-blockDec (Key, Cm-1, I m-1, j)

c) Pm ← empty

4. else do

a) j ← (m-1) % 32

b) PPm-1←DETBC-AES-blockDec(Key,Cm-1,Im, j)

c) Pm ←first leftmost r bits of PPm-1

d) C’ ← last rightmost (128-r) bits of PPm-1

e) CCm-1← Cm || C’

f) j ← (m-2) % 32

g) Pm-1←DETBC-AES-blockDec(Key,CCm-1,I m-1,j)

5. P ← P1 ||…. || Pm-1 || Pm

An illustration of encrypting the last two blocks Cm−1Cm in

the case that Cm is a partial block (r > 0) is provided in

Figure 5.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 75
Volume 2, Issue 1, February 2011

Figure 5. DETBC decryption of last two blocks

when last block is 1 to 127 bits.

5. Performance Analysis

Security: Each block is encrypted with a different tweak T,

which is the result of a non-linear function (multiplication) of

encrypted file address and previous ciphertext (α
Js

 for 1
st

block); due to this step the value of the tweak is neither

known nor controlled by the attacker. By introducing the

tweak, the attacker can not perform the mix-and-match attack

[21] among blocks of different sectors, as each sector has a

unique secret tweak. Any difference between two tweaks

result full diffusion in both the encryption and decryption

directions. These enhance the security.

 Here we also give option for the value of α to the user; it

reduces the probability of getting plaintext from ciphertext.

This is so because same plaintext produces different

ciphertext if we choose different value for α. This also

increases confusion.

Complexity: DETBC possesses high performance as it uses

only simple and fast operations as standard simple shift and

add (xor) operators are used in the multiplication in the finite

field GF (2
128

) having O(1) time complexity. Compression

before encryption also enhances the speed and hence

performance.

Parallelization: DETBC can be parallelized on the sector

level as each sector is encrypted independently to other

sectors. Also a plaintext can be recovered from just two

adjacent blocks of ciphertext. As a consequence, decryption

can be parallelized.

Error propagation: As each block depends on its previous

block, a one-bit change in a plaintext affects all following

ciphertext blocks. Hence, error propagation is met.

DETBC meets all its design goals.

5.1 Comparison

In this section, we compare our model with existing models

[18]. The speed presented in table 3 for our mode (DETBC),

is obtained from C implementation and taking a binary file as

input, running on a 3 GHz Intel Pentium IV processor.

Table 3. Number of clock cycles reported by different

mode of operation.

Mode Key Length 128-bits

DETBC 4158

CBC 12630

CFB 12585

ESCC 12660

Note that the reported values are the minimum from

measurements of different input files, to eliminate any initial

overheads or cache misses factors. It is clear that DETBC

possesses high throughput.

6. Conclusions and Open Problem

In this paper, we present a new mode of operation for disk

encryption applications. The proposed scheme possesses a

high throughput. Although, it is designed based on the CBC

mode, it can be parallelized and does not suffer from the bit

flipping attack. This mode also utilizes less memory space as

the input file is first compressed and then it is encrypted.

 There still remain many open problems in the search for

efficient and secure disk encryption. There is a lack of good

Boolean functions for the tweak generator which are efficient

and also resist the cryptanalytic attacks, in particular

algebraic and fast algebraic attacks.

References

[1] Bruice Schneier, Applied Cryptography, Wiley Press,

Second Edition.

[2] Douglas R. Stinson, Cryptography Theory and Practice,

CRC Press, Second Edition.

[3] Mark Nelson, Jean-Loup Gailly, The Data Compression

Book, M&T Press, Second Edition.

[4] William Stallings, Cryptography and Network Security,

Pearson Education, Fourth Edition.

[5] Anderson, R., Biham, E.: Two practical and provable

secure block ciphers: BEAR and LION. In: Gollmann,

D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113-120.

Springer, Heidelberg (1996)

[6] S. Halevi and P. Rogaway, A tweakable enciphering

mode, in Lecture Notes in Computer Science, D.

Boneh, Ed. Berlin, Germany: Springer-Verlag, 2003,

vol. 2729, pp. 482-499.

[7] A. Menezes, P. V. Oorschot., and S. Vanstone.

Handbook of Applied Cryptography. CRC Press, 1996.

[8] D. McGrew. Counter Mode Security: Analysis and

Recommendations.

http:// citeseer.ist.psu.edu/mcgrew02counter.html, 2002.

[9] P. Rogaway, M. Bellare, and J. Black. OCB: A

blockcipher mode of operation for efficient

authenticated encryption. ACM Trans. Inf. Syst. Secur.,

6(3):365-403, 2003.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 76
Volume 2, Issue 1, February 2011

[10] R. Schroeppel. The Hasty Pudding Cipher. The first

AES conference, NIST, 1998.

http://www.cs.arizona.edu/~rcs/hpc

[11] M. Liskov, R. L. Rivest, and D.Wagner, Tweakable

block ciphers, in Lecture Notes in Computer Science,

M. Yung, Ed. Berlin, Germany: Springer-Verlag, 2002,

vol.2442, pp. 31-46.

[12] S. Lucks, BEAST: A fast block cipher for arbitrary

block sizes. In: Horster, P. (ed.) Communications and

Multimedia Security II, Proceedings of the IFIP

TC6/TC11 International Conference on

Communications and multimedia Security (1996)

[13] C. Fruhwirth, New Methods in Hard Disk Encryption.

http://clemens.endorphin.org/nmihde/nmihde-A4-ds.

pdf, 2005.

[14] N. Ferguson. AES-CBC + Elephant diffuser: A Disk

Encryption Algorithm for Windows Vista.

http://download.microsoft.com/download/0/2/3/0238aca

f-d3bf-4a6d-b3d6-0a0be4bbb36e/BitLockerCipher2006

08.pdf,2006.

[15] Lempel-Ziv-Welch.

http://en.wikipedia.org/wiki/Lempel-Ziv-Welch

[16] P. Crowley. Mercy, A fast large block cipher for disk

sector encryption. In Bruce Schneier, editor, Fast

Software Encryption: 7th International Workshop, FSE

2000, 2001.

[17] Mitsuru Matsui. The first experimental cryptanalysis of

the data encryption standard. In Y. Desmedt, editor,

Advances in Cryptology-CRYPTO 1994, number 839

in Lecture Notes in Computer Science, pages 1-11.

Springer-Verlag, 1994.

[18] M. Abo El-Fotouh and K. Diepold, Extended

Substitution Cipher Chaining Mode.

http://eprint.iacr.org/2009/182.pdf

[19] P. Sarkar, Efficient Tweakable Enciphering Schemes

from (Block-Wise) Universal Hash Functions.

http://eprint.iacr.org/2008/004.pdf

[20] S. Fluhrer, Cryptanalysis of the Mercy block Cipher. In:

Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, p. 28.

Springer, Heidelberg (2002)

[21] I. P1619. IEEE standard for cryptographic protection of

data on block oriented storage devices. IEEE Std. 1619-

2007, April 2008. http://axelkenzo.ru/downloads/1619-

2007-NIST-Submission.pdf

[22] P. Rogaway. Efficient Instantiations of Tweakable Block

ciphers and Refinements to Modes OCB and PMAC. In

Pil Joong Lee, editor, Advances in Cryptology -

ASIACRYPT ’04, volume 3329 of LNCS, pages 16-31,

2004.

[23] Disk encryption theory.

http://en.wikipedia.org/wiki/Disk_encryption_theory

[24] Latest SISWG and IEEE P1619 drafts for Tweakable

Narrow-block Encryption.

http://grouper.ieee.org/groups/1619/email/pdf00017.pdf

Debasis Gountia received the Bachelor of Computer Science and

Engineering degree from Biju Patnaik University of Technology, Rourkela,

India , in 2003. He received the Master of Technology degree in Computer

Science and Engineering from the Indian Institute of Technology,

Kharagpur, India in 2010.

 Since January 2006, he has been a Lecturer with the College of

Engineering & Technology, Bhubaneshwar, India. His research interests

include cryptography, formal language and automata theory, operating

systems, and distributed systems.

Dipanwita Roy Chowdhury received the Bachelor and the Master of

Technology degree in Computer Science, both from University of Kolkata,

India, in 1987 and 1989, respectively. She received the Ph.D. degree from

the Indian Institute of Technology, Kharagpur, India in 1994.

 She is a Professor with the Indian Institute of Technology, Kharagpur,

India. Her research interests include cryptography, error correcting code,

cellular automata, and VLSI design and testing.

